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ABSTRACT

This paper shows that the synoptic variability of zonal and meridional midlatitude Pacific and Southern Ocean
sea surface winds can be well described by a univariate stochastic dynamical system directly derived from data.
The method used to analyze blended Quick Scatterometer (QuikSCAT)–NCEP winds is a general method to
estimate drift and diffusion coefficients of a continuous stationary Markovian system. Almost trivially, the
deterministic part consists of a simple, nearly linear damping term. More importantly, the stochastic part appears
to be a state-dependent white noise term, that is, multiplicative noise. The need for a multiplicative noise term
to describe the variability of midlatitude winds can be interpreted by the fact that the variability of midlatitude
winds increases with increasing wind speed. The results indicate that a complete stochastic description of
midlatitude winds requires a state-dependent white noise term, that is, multiplicative noise. A simple Ornstein–
Uhlenbeck process is not sufficient to describe the wind data within a stochastic framework. The method used
fails for tropical regions, suggesting that tropical variability might be non-Markovian.

1. Introduction

The description of atmospheric multiscale nonlinear
dynamics by stochastic differential equations (SDEs) is
becoming increasingly popular. The general idea of sto-
chastic climate models was introduced by Hasselmann
(1976) and is based on the Brownian motion analog:
the observed red spectrum of oceanic fluctuations is a
consequence of the amplification of low-frequency
weather fluctuations. Stochastic climate models have
been surprisingly successful in describing, for example,
a broad frequency band of oceanic variability. The suc-
cess of this concept has inspired researchers to consider
stochastic atmospheric forcing as a possible source of
more complex ocean dynamics, for instance for mid-
latitude climate variability (e.g., Barnett et al. 1999;
Junge et al. 2000; Czaja and Frankignoul 1999; Weng
and Neelin 1998; Sura et al. 2000, 2001; Sura and Pen-
land 2002; Münnich et al. 1998; Saravanan and
McWilliams 1997, 1998; Mikolajewicz and Maier-Rei-
mer 1990; and others) and El Niño–Southern Oscillation
(ENSO) variability (e.g., Blanke et al. 1997; Kleeman
and Moore 1997; Eckert and Latif 1997; and others).

Empirical stochastic models are derived by fitting sto-
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chastic models to time series of observed data. This is
a widespread method in climate research (see e.g., von
Storch and Zwiers 1999). For example, using Principal
Oscillation Patterns (POPs), Hasselmann (1988) fitted
the time evolution of a system to a simple linear low-
order SDE. Other well-known examples are the linear
inverse models (e.g., Penland and Sardeshmukh 1995;
DelSole and Hou 1999; Winkler et al. 2001). Empirical
stochastic models are often used as forecast tools. Most
empirical stochastic models introduce the stochastic per-
turbations as additive noise. That is, the strength of the
noise is held constant and does not depend on the state
of the system. However, the strength of the noise may
also depend on the state of the system. In that case, the
stochastic term appears as multiplicative noise. The use
of multiplicative noise might be useful or even neces-
sary to describe the turbulent atmospheric motion in a
stochastic framework.

The importance of multiplicative noise to describe
small-scale turbulence has been recently shown by
Friedrich and Peinke (1997a,b) and Renner et al. (2001).
By analyzing experimental data the authors showed that
the statistics of velocity increments Dur 5 u(x 1 r) 2
u(x) (u is the velocity in the direction of x, and r is any
distance measured along x; Dur is a measure of the
turbulent cascade) in a turbulent jet can be described
by a univariate Markov process determined by a drift
and a diffusion coefficient. The deterministic drift acts
as a damping term. Yet, the most prominent feature is
that the noise term is not a constant, but appears to be
state dependent: higher velocity increments correspond
to higher variability—that is, noise—and vice versa.
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Thus, the stochastic term appears as multiplicative
noise. See Sreenivasan and Antonia (1997) for a recent
review of small-scale turbulence.

These findings motivate the present paper. Using the
same method, the deterministic drift and the noise term
are determined for observed wind velocities, to explore
the stochastic properties of the atmospheric motion. In
particular, this paper shows that a proper stochastic de-
scription of univariate midlatitude sea surface winds
requires a multiplicative noise component, a feature that
has hardly been emphasized in related studies. In section
2 the method is introduced. The data are described in
section 3, and results are presented in section 4. Finally,
section 5 provides a summary and a discussion.

2. Method

In this study a general method is used to estimate the
drift and diffusion coefficients of the Fokker–Planck
equation for a continuous stationary Markovian sto-
chastic process (Siegert et al. 1998; Friedrich et al.
2000a,b; Gradišek et al. 2000). A wide class of physical
processes can by described by a Markovian system.
Thus, we consider the dynamics of a n-dimensional sys-
tem governed by the following Itô SDE:

dx
5 A(x) 1 B(x)h, (1)

dt

with the n 3 n matrix B. In the subsequent discussion
all stochastic components hi are assumed to be inde-
pendent Gaussian white noise processes:

^h (t)& 5 0, ^h (t)h (t9)& 5 d(t 2 t9),i i i (2)

where ^. . .& denotes the averaging operator. For a de-
tailed discussion of stochastic integration and the dif-
ferences between Itô and Stratonovich SDEs see, for
example, Horsthemke and Lefever (1984) or Gardiner
(1985). To briefly summarize, the Stratonovich calculus
best represents situations where rapidly fluctuating
quantities with small but finite correlation times are pa-
rameterized as white noise. The Itô stochastic calculus
is used when discrete uncorrelated fluctuations are ap-
proximated as continuous white noise. That means, that
continuous physical systems, as the atmosphere, are nor-
mally described by the Stratonovich calculus. Never-
theless, in the Itô interpretation the deterministic term
A(x) can simply be interpreted as the so-called effective
drift [the sum of the deterministic and the noise-induced
drift in Stratonovich systems; see Horsthemke and Le-
fever (1984) or Gardiner (1985) for details].

The probability density function p(x, t) (PDF) of the
Itô SDE (1) is governed by the corresponding Fokker–
Planck equation (e.g., Gardiner 1985; Horsthemke and
Lefever 1984; Paul and Baschnagel 1999), which reads

]p(x, t) ]
5 2 A p(x, t)O i]t ]xi i

21 ]
T1 (BB ) p(x, t). (3)O i j2 ]x ]xi, j i j

The Fokker–Planck equation describes the conservation
of the probability density p(x, t) of the system described
by the SDE. The first term on the right describes the
dynamics of the deterministic system and is called the
deterministic drift. The remaining term causes the dif-
fusion of the system.

Now, it is possible to determine the deterministic and
stochastic part directly from data by simply using their
statistical definition:

1
A(x) 5 lim ^X(t 1 Dt) 2 x&| , (4)X(t)5xDtD t→0

1
TB(x)B (x) 5 lim ^[X(t 1 Dt) 2 x&]

DtD t→0

T3 [X(t 1 Dt) 2 x&] &| , (5)X(t)5x

where X(t 1 Dt) is a solution, that is, a single stochastic
realization of the SDE (1), that starts at X(t) 5 x at time
t. At every point x in the state space spanned by the
data that is visited often enough by the trajectory, de-
terministic and stochastic parts of the underlying dy-
namics can be estimated. Note that the theoretical limit
Dt → 0 must be replaced by a finite-difference approx-
imation (see the appendix for the univariate error esti-
mation in the case of a finite time increment Dt). If
required, analytical functions can be fitted to the nu-
merically estimated functions A(x) and B(x)BT(x) to
formulate analytical model equations to describe the
system under consideration. In order to verify the re-
sults, the estimated functions A(x) and B(x)BT(x) can
be inserted into the Fokker–Planck equation (3), and the
resulting PDF predicted by (3) can be compared with
the PDF obtained directly from the data. Note that
B(x)BT(x) is estimated from data. In general, it is im-
possible to find a unique expression for B(x) in the
multivariate case, because it is not guaranteed that B(x)
is invertable. However, in the univariate case B(x) 5

. The sign of the square root is arbitrary because2ÏB(x)
B(x) is multiplied by Gaussian white noise with zero
mean. Thus, in the univariate case, even the SDE (1)
can be used to test the estimates of A(x) and B(x) by
simply comparing the properties (e.g., moments, spec-
tra, etc.) of the original time series with the properties
of the time series obtained by integrating (1).

The technique described here has been successfully
applied to a wide class of problems. For example, Fried-
rich and Peinke (1997a,b) and Renner et al. (2001) de-
scribe statistical properties of a turbulent cascade. Fried-
rich et al. (2000a) quantify deterministic and stochastic
influences on the foreign exchange market. Geophysical
examples are provided by Ditlevsen (1999), who fitted
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FIG. 1. (a) The estimated deterministic drift A(x) and (b) the es-
timated noise B(x) for the zonal wind at 508S (Southern Ocean). The
dashed line with circles shows the actual estimated function, the solid
line is a fourth-order polynomial fit.

FIG. 2. (a) The estimated deterministic drift A(x) and (b) the es-
timated noise B(x) for the meridional wind at 508S (Southern Ocean).
The dashed line with circles shows the actual estimated function, the
solid line is a fourth-order polynomial fit.

a Fokker–Planck equation to ice core data, Egger
(2001), who stochastically described the equatorial com-
ponents of global angular momentum and related
torques using a master equation, and Egger and Jonsson
(2002), who stochastically describe Icelandic meteo-
rological datasets. Note that Egger and Jonsson (2002)
analyzed two-dimensional wind data in the same way
as it is done in this study. Nevertheless, as discussed
above, it is impossible to find a unique expression for
B(x) in the two-dimensional case. The advantage in Eg-
ger and Jonsson (2002) is that the dynamics of the winds
come out more clearly. Nevertheless, the noise terms
cannot be analyzed in a straightforward way, as it is
possible in the univariate case. Therefore, Egger and
Jonsson (2002) do not focus on multiplicative noise.

3. Data

In this study observed global 6-hourly ocean surface
winds are used. The data are derived from a space and

time blending of Quick Scatterometer (QuikSCAT) ob-
servations and National Centers for Environmental Pre-
diction (NCEP) reanalyses (Chin et al. 1998; Milliff et
al. 1999). The blending method creates global fields by
retaining QuikSCAT wind retrievals in swath regions,
and in the unsampled regions augmenting the low-wave-
number NCEP fields with a high-wavenumber compo-
nent that is derived from monthly regional QuikSCAT
statistics. Six-hourly maps of 10-m zonal (u) and me-
ridional (y) wind components are available at a reso-
lution of 0.58 3 0.58 from 888S to 888N. The data used
cover the period 20 July 1999 to 31 December 2000.
The data files are available from the National Center
for Atmospheric Research (NCAR) Data Support Section
(DSS; available online at http://dss.ucar.edu/datasets/
ds744.4/). A detailed description of the blended wind
product similar to the one used in the present paper can
be found in Milliff et al. (1999), and the details of the
blending method are described in Chin et al. (1998).
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FIG. 3. PDFs predicted by the Fokker–Planck equation using the
estimated functions A(x) and B(x) (solid line), and the PDFs obtained
directly from the data (dashed line with circles): (a) for the zonal
wind, and (b) for the meridional wind at 508S (Southern Ocean).

The spectral properties of the QuikSCAT surface wind
were recently analyzed by Patoux and Brown (2001).

In reanalyzed datasets [NCEP or European Centre for
Medium-Range Weather Forecasts (ECMWF)] obser-
vations are assimilated within an atmospheric model to
produce the analyzed fields that are consistent with the
model dynamics. Nevertheless, the spatial and temporal
coverage of observations over the oceans (in particular
over the Southern Ocean) is very limited. That is, the
used QuikSCAT-based dataset contains much more wind
observations over the oceans than the reanalyzed prod-
ucts. Therefore, in contrast to NCEP or ECMWF data,
the QuikSCAT-based wind data over the oceans are re-
garded as observations, not as model output. Indeed,
scatterometer winds are shown to be tremendously ac-
curate (Bourassa et al. 1997) and are expected to be
more reliable than reanalyzed datasets (Patoux and
Brown 2001). Nonetheless, the disadvantage of the
QuikSCAT dataset is that it covers a rather short period.

Because an estimation of the drift and diffusion func-

tions A(x) and B(x)BT(x) requires long time series, it
is not possible to obtain reliable estimates at each grid
point. Seventeen months of 6-hourly wind fields yield
2072 data points, which is insufficient to obtain stable
estimates of A(x) and B(x)BT(x). To circumvent this
problem, artificial ‘‘time series,’’ which retain the sto-
chastic properties of the wind fields as a function of
latitude, are constructed in the following way. Estimates
of spatial autocorrelations for Southern Ocean Quik-
SCAT winds indicate decorrelation scales of about 1000
km in the zonal direction and 1500 km in the meridional
direction (not shown). A comparable zonal spatial de-
correlation scale is valid for the midlatitude North Pa-
cific storm track. For tropical and subtropical regions
the zonal spatial decorrelation scale is smaller, because
there the atmospheric variability is dominated by rela-
tively small-scale convective events.

Therefore, grid points that are separated by 1000 km
or more in the zonal direction can be treated as sto-
chastically independent locations representing indepen-
dent realizations of the same stochastic process. The
zonal dependence, as well as the annual cycle, of the
wind field are neglected by normalizing the time series
to have zero mean and unit standard deviation. This is
done by normalizing the data for each month and every
chosen zonal location. Finally, several 17-month-long
time series can be concatenated to obtain a longer time
series which retains the overall stochastic dynamical
properties of the actual wind field as a function of lat-
itude. The resulting time series can be interpreted as
normalized zonally averaged wind speeds. This proce-
dure is carried out for the Southern Ocean (20 locations
in longitude) and the Pacific Ocean (between 6 and 14
points in longitude, depending on the latitude). The zon-
al extension of the Atlantic and the Indian Ocean is too
small to obtain enough stochastically independent lo-
cations. Nevertheless, it is expected that the results dis-
cussed in the next section are general properties of the
atmospheric wind field, and are, therefore, valid for re-
gions other than those analyzed in this paper.

4. Results

In this section the method described in section 2 is
applied to univariate wind datasets for the Southern and
Pacific Oceans. The governing SDE is

dx
5 A(x) 1 B(x)h, (6)

dt

where x is the zonal wind velocity (u) and the meridional
wind component (y), respectively. To evaluate A(x) and
B(x) using the one-dimensional finite-difference ver-
sions of Eqs. (4) and (5), the interval spanned by the
data is divided into 50 equal bins (sensitivity experi-
ments with different numbers of bins were performed
as well, but the general results discussed below did not
change). The error up to the order Dt made by using a
finite time increment Dt is calculated in the appendix
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FIG. 4. Autocorrelations and spectra of original data (solid lines) and data obtained by the SDE using the
estimated functions A(x) and B(x) (dashed lines) for (a),(b) the zonal wind, and (c),(d) the meridional wind at
508S (Southern Ocean).

and given by (A5) and (A6). In the following, the small-
est possible discrete time step of 6 h is used for Dt in
the finite-difference approximation, except for an error
estimation. Actually, the most practical way to detect
the error made by using a finite time step is to change
Dt and to compare the results. Therefore, the use of
different time steps Dt ensures that the error made by
using a finite-difference approximation of (4) and (5) is
small and neglectable (see the appendix for a more de-
tailed discussion). Local estimates of A(x) and B(x) are
significant if the trajectory of the data visits a bin more
than 100 times. That is, border points where the sig-
nificance is automatically low are neglected. For 100
visits Gaussian noise with zero mean and unit variance
is detected within a confidence interval 60.2 on a 95%
confidence level. This is a very stringent assumption,
because the data are assumed to be purely stochastic,
so that the deterministic part A(x) is assumed to be zero.
The confidence interval decreases, and the confidence
level increases with more visits in a particular bin. How-
ever, one has to keep in mind that for this method the
data are expected to be Markovian; the method fails if
the data are non-Markovian. Thus, one has to check if
the method yields stable and physically reasonable re-
sults for different numbers of bins and, more impor-
tantly, for different discrete time steps Dt. A lack of

convergence can be regarded as an indication of the
non-Markovian properties of the process.

a. Southern Ocean

For the Southern Ocean the method yields stable re-
sults. That is, the finite-difference estimates of A(x) and
B(x) do not depend sensitively on the time step Dt. In
particular, the results are the same for time steps of Dt
5 6, 12, and 18 h. That is, the error terms proportional
to Dt in (A5) and (A6) are small and neglectable for
those time steps. The estimates diverge for time steps
equal to or larger than 24 h. Furthermore, it turns out
that the agreement of the solutions of the Fokker–Planck
equation (3) with the PDFs obtained directly from the
data, and the comparison of the properties of the original
time series with those of the data obtained by integrating
the SDE (1) is very good (see below). Thus, the fol-
lowing results are significant.

As a representative result for the Southern Ocean the
estimated functions A(x) and B(x) for the zonal and me-
ridional winds at 508S are shown in Figs. 1 and 2. Other
latitudes within the Southern Ocean yield similar results
and are, therefore, not shown. The dimensional zonally
averaged zonal and meridional wind speeds are 5 6.6u
m s21 and 5 21.1 m s21. The corresponding zonallyy
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FIG. 5. Zonal mean and standard deviation of the surface winds
over the Pacific Ocean for (a) the zonal wind and (b) the meridional
wind.

averaged standard deviations are u 5 5.7 m s21 ands
y 5 6.5 m s21. Parameters A(x) and B(x) are approx-s

imated by fourth-order polynomial fits: A(x) 5 aixi4Si50

and B(x) 5 bixi. Note that the normalized wind4Si50

speeds, for example the zonal wind u, can be trans-
formed into dimensional winds through the relation x*
5 x u 1 , whereby x denotes normalized winds ands u
x* dimensional winds.

For the zonal wind (Fig. 1) it can be seen that the
deterministic term A(x) acts to dampen the wind stress.
The damping timescale [the inverse slope of A(x)] is
not constant but depends somewhat on the zonal wind
speed. Near the origin the damping timescale is about
1.5 days. The slope becomes steeper for high absolute
values of x. There, the damping timescale is about 0.5
days. As a first approximation the damping term can be
regarded as a linear function with a damping timescale
of about 1 day. Note that A(x) is zero at the origin. That
means, the deterministic drift actually acts as a relax-
ation term towards the mean zonal flow. In the linear
case, and if the function B(x) is treated as constant, the
wind would obey an Ornstein–Uhlenbeck process, also

called red noise process or Brownian motion. Never-
theless, the function B(x) (Fig. 1b) is not constant, but
depends on the state of the system. It can be seen that
the function B(x) almost obeys a parabola. Thus, the
stochastic forcing appears as multiplicative noise. The
need for a parabolic multiplicative noise term to de-
scribe the variability of the Southern Ocean winds can
be qualitatively interpreted by the well-known fact that,
in general, the variability of midlatitude winds increases
with increasing wind speed; the multiplicative noise ac-
counts for the gustiness of the synoptic winds. Thus, an
additional multiplicative noise term in a stochastic de-
scription of the Southern Ocean winds appears to be
reasonable. The minimum of B(x) is not at x 5 0, but
is found for a positive value of x ø 0.6. Moreover, the
absolute gradient of B(x) is larger to the right of the
minimum than it is to the left. Note that zero zonal flow
is attained for x 5 2 / u 5 21.2. Furthermore, inu s
dimensional units the minimum of B(x) is at x* 5
0.6 u 1 5 10 m s21. That is, the structure of thes u
function B(x) reveals a remarkable characteristic of the
underlying time series: the variability of eastward winds
decreases for increasing wind speeds, until the eastward
flow exceeds speeds of 10 m s21. Only after this thresh-
old the variability of the zonal wind increases with fur-
ther increasing wind speeds.

This behavior might be understood in terms of insta-
bility in the presence of friction (e.g., Pedlosky 1987).
Without friction an unstable wave can use the total
amount of energy extracted out of the mean flow for its
growth. The presence of friction alters this behavior,
because for the wave to grow it must drain energy from
the basic flow in excess of its dissipative loss. For small
but increasing wind speeds, the dissipative loss of en-
ergy increases more than the gain of energy from the
main flow. That means, the variability of the flow de-
creases with increasing wind speeds. Only beyond a
certain threshold wind speed does the energy gain from
the basic flow exceed the dissipative loss. After this
point, the variability increases with further increasing
wind speeds. Nevertheless, this mechanism has to be
regarded as a hypothesis.

Likewise, for the meridional wind (Fig. 2), it can be
seen that the deterministic term A(x) acts to dampen the
wind. Again the damping is not constant but actually
depends somewhat on the zonal wind speed. The damp-
ing timescales are nearly the same as for the zonal wind.
Once more the function B(x) almost obeys a parabola,
although the minimum of B(x) is now at x ø 0.2. Thus,
in dimensional units the minimum of B(x) is at x* 5
0.2 y 1 5 0.2 m s21. Note that for the meridionals y
wind zero flow is attained for x 5 2 / y 5 0.17. Thaty s
means, that the previously discussed effect for the var-
iability of the zonal wind, is not as strong for the var-
iability of the meridional wind.

In order to verify the results, the estimated functions
A(x) and B(x) are, on the one hand, inserted into the
Fokker–Planck equation (3), and the solution is com-
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FIG. 6. The estimated deterministic drift A(x) and the estimated noise B(x) for the zonal wind over the Pacific
Ocean: (a),(b) between 308 and 408N, and (c),(d) between 458 and 558N.

pared with the PDF obtained directly from the data.
Analytic solutions of the Fokker–Planck equation (3)
can only be found for limited cases; for more general
cases numerical methods must be used. In this paper the
semi-implicit Chang–Cooper method is implemented to
solve (3) (Chang and Cooper 1970; Park and Petrosian
1996). The PDFs for the zonal and meridional winds
are shown in Fig. 3. It can be seen that the solutions of
the Fokker–Planck equation (3) are in very good agree-
ment with the PDFs obtained from the data for both the
zonal (Fig. 3a) and the meridional wind (Fig. 3b). Even
the skewness of the zonal winds is well captured by the
solution of the Fokker–Planck equation. This skewness
of the zonal winds is a result of the nonsymmetric be-
havior of B(x) relative to its minimum at x ø 0.6. As
seen in Fig. 1b, the absolute gradient of B(x) is larger
right of the minimum than left of it. For example, 61
unit away from the minimum, | ]B/]x | 1.6 ø 0.8 and | ]B/
]x | 20.4 ø 0.3. Dynamically speaking, right of the min-
imum the steeper absolute gradient of B(x), as compared
to the region left of the minimum, gives rise to stronger
stochastic kicks than on the left-hand side. Thus, the
probability that the trajectory x is found right of the
minimum is lower than the probability it is found left
of the minimum. This mechanism is well known to be
at work in stochastic system with multiplicative noise

(Sura 2002). Because, for the meridional wind, the ab-
solute gradient of B(x) is more symmetric relative to its
minimum at x ø 0.2, as compared to the zonal wind,
the corresponding PDF is more symmetric as well (61
unit away from the minimum, | ]B/]x | 1.2 ø 0.4) and
| ]B/]x | 20.8 ø 0.5).

On the other hand, the SDE (1) is used to test the
estimates of A(x) and B(x) by comparing the original
time series with the time series obtained by integrating
(1). This is done by calculating autocorrelations and
spectra of the original and the corresponding ‘‘artificial’’
data (see Fig. 4). The SDE (1) is numerically solved by
the stochastic Euler scheme (see, e.g., Kloeden and Plat-
en 1992). For the zonal wind the original autocorrela-
tions and the spectra are in good agreement with the
artificial ones. Nevertheless, a striking difference can
be seen in the spectra at very high frequencies. The
stochastic model does not reproduce the steep spectral
dip of the original data at frequencies above about 0.3
cycles per 0.25 days (the highest resolved frequency is
0.5 cycles per 0.25 days). It is known that Markov mod-
els are not capable of reproducing steep spectral dips at
very high frequencies (DelSole 2000). For the meridi-
onal wind the autocorrelations and spectra are in slightly
poorer agreement. Again, the stochastic model does not
reproduce the steep spectral dip of the original data at
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FIG. 7. The estimated deterministic drift A(x) and the estimated noise B(x) for the zonal wind over the Pacific
Ocean: (a),(b) between 308 and 408S, and (c),(d) between 458 and 558S.

very high frequencies. Nevertheless, even for the me-
ridional wind the stochastic model reproduces the gen-
eral characteristics of the original data.

To summarize, a complete stochastic description of
the Southern Ocean winds requires a state-dependent
white noise term, that is, multiplicative noise. A simple
Ornstein–Uhlenbeck process is not sufficient to describe
the wind data within a stochastic framework.

b. Pacific Ocean

For the Pacific Ocean the method yields stable results
only in the extratropics (that is, the regions poleward
of about 308N and 308S). There, the estimates of A(x)
and B(x) do not depend sensitively on the time step Dt.
The successful verification of the results by comparing
the original data with the SDE (1) and the Fokker–
Planck equation (3) are not presented for the extratrop-
ical Pacific Ocean. In the Tropics the finite-difference
estimates of A(x) and B(x) depend on the time step Dt.
Thus, in the following, only the results for the extra-
tropics are presented. Possible reason for the lack of
convergence in the Tropics are discussed in the final
section.

The estimated functions A(x) and B(x) for the zonally
averaged zonal and meridional surface winds over the

Pacific Ocean as a function of latitude are shown in
Figs. 6, 7, 8, and 9. Again, A(x) and B(x) are approx-
imated by fourth-order polynomials. For convenience
the actual estimates of A(x) and B(x) are not shown. In
this section only the fitted polynomials are presented,
because in the previous section it has been shown that
A(x) and B(x) can be very well represented by fourth-
order polynomials. The corresponding dimensional zon-
ally averaged zonal and meridional wind speeds and
standard deviations are shown in Fig. 5 (for convenience
the Tropics are included in Fig. 5).

Parameters A(x) and B(x), for the zonally averaged
zonal wind as a function of latitude between 308N and
308S, and 558N and 508S, for the North and South Pa-
cific, are shown in Figs. 6 and 7. The damping of the
zonal winds is nearly constant for the latitudes consid-
ered here. On average the damping timescale is about
1day and, as for the Southern Ocean, the slope of A(x)
becomes steeper for higher absolute values of x. Again
A(x) becomes zero in the origin of the coordinate sys-
tem. Thus, the deterministic drift actually acts as a re-
laxation term towards the mean zonal flow. At 308N and
308S, the noise term B(x) has its minimum for negative
values of x. Note that, for 308N and 308S, dimensional
zero zonal flow is now attained for positive values of
x, because the zonal flow is westward at 308N and 308S
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FIG. 8. The estimated deterministic drift A(x) and the estimated noise B(x) for the meridional wind over the
Pacific Ocean: (a),(b) between 308 and 408N, and (c),(d) between 458 and 558N.

(see Fig. 5). Further poleward the winds change their
sign to form the midlatitude westerlies. There, zero zon-
al flow is attained for negative values of x, as previously
discussed for the eastward winds over the Southern
Ocean. That means, that the variability of westward re-
spectively eastward winds decreases for increasing
wind speeds, until the westward respectively eastward
wind exceeds a certain threshold value. Moreover, on
both hemispheres, B(x) is nearly constant within the
westerlies.

Parameters A(x) and B(x) for the zonally averaged
meridional wind as a function of latitude for the North
and South Pacific are shown in Figs. 8 and 9. The de-
terministic term A(x) acts to damp the wind, whereas
again the damping is not constant but depends somewhat
on the meridional wind speed. The damping timescales
are nearly the same as for the zonal wind. However, for
the North Pacific the damping does not increase for large
negative values of x, but the slope is instead nearly
constant. Again, the function B(x) reveals the tendency
of the winds to become more variable for increasing
wind speeds.

5. Summary and discussion
This paper shows that the synoptic variability of mid-

latitude Pacific and Southern Ocean sea surface winds

can be well described by a stochastic dynamical system
directly derived from data. The method used to analyze
blended QuikSCAT–NCEP winds is a general method
to estimate drift and diffusion coefficients of a contin-
uous stationary Markovian system. The deterministic
part consists of a simple damping term. More impor-
tantly, a proper description of the analyzed winds re-
quires a state-dependent white noise term, that is, mul-
tiplicative noise. An Ornstein–Uhlenbeck process is not
sufficient to describe the wind data within a stochastic
framework. The need for a parabolic multiplicative
noise term to describe the variability of the midlatitude
winds can be qualitatively interpreted by the fact that
the variability of midlatitude winds increases with in-
creasing wind speed. Therefore, a multiplicative noise
term in a stochastic description of midlatitude winds
appears to be reasonable. Moreover, the method used
reveals another remarkable characteristic of the under-
lying time series: the variability of westward and east-
ward winds decreases for increasing wind speeds, until
the winds exceed a certain threshold value. This be-
havior may be understood in terms of an instability
mechanism in the presence of friction. Nevertheless, this
notion has to be regarded as a hypothesis, which has to
be tested in a modeling study.

The method fails for tropical regions. In the Pacific
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FIG. 9. The estimated deterministic drift A(x) and the estimated noise B(x) for the meridional wind over the
Pacific Ocean: (a),(b) between 308 and 408S, and (c),(d) between 458 and 558S.

FIG. 10. Spectrum (solid line) of the zonal wind at the equatorial
Pacific. The meridional wind has the same spectral dependence. The
1/ f slope is indicated by the dashed line.

Ocean the method yields stable results only in the ex-
tratropics. There, the finite-difference estimates of the
drift and diffusion coefficients do not depend on the
time step, whereas in the Tropics the estimates do not
converge. There is one likely reason for the lack of
convergence in the Tropics. The tropical variability

might be non-Markovian. Yano et al. (2001) present
evidence that tropical convective variability behaves as
1/ f noise. However, 1/ f noise can not be modeled by
a simple Markovian process (Hooge 1976). This notion
is supported by the spectral analyses of the tropical wind
fields: near the equator the wind fluctuations behave as
1/ f noise (see Fig. 10). The 1/ f dependence, that is, the
non-Markovian behavior in the Tropics and its impact
on ocean dynamics deserves further research.

The implications of multiplicative noise in sea surface
wind data are clear. Sura and Penland (2002) show, in
the context of a reduced gravity, double-gyre ocean
model driven by wind stress, how ‘‘minor’’ details of
stochastic forcing can have a significant effect on the
temporal and spatial response by the forced system: the
regime behavior of the double-gyre model depends on
the short-scale temporal aspects of the stochastic forc-
ing. Thus, the accuracy of a stochastic model crucially
depends on how appropriate the stochastic representa-
tion is to the physical process it is meant to represent.
Therefore, the impact of a multiplicative wind forcing
on the midlatitude ocean circulation has to be studied
in the future.

In summary, the results indicate that it might be nec-
essary to include multiplicative noise terms in stochastic
models to fit them to reality or to more complex models.
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In particular, the structure of the multiplicative noise
term B(x) reveals physical processes not captured by
additive noise. Thus, multiplicative noise is essential to
capture the complex behavior of given data within an
empirical stochastic model.
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APPENDIX

Error Estimation: Stochastic Taylor Expansion

Estimating the deterministic drift (4) stochastic dif-
fusion (5) from data is fraught with the potential for
error. In this appendix a simple way of estimating the
error in these parameters for an univariate system is
derived. A more detailed discussion can be found in
Sura and Barsugli (2002). The governing Itô SDE reads

dx
5 A(x) 1 B(x)h(t), (A1)

dt

with ^h(t)& 5 0 and ^h(t)h(t9)& 5 d(t 2 t9). The correct
definitions of A(x) and B2(x) are given by (4) and (5).
Nevertheless, the definitions are only correct in the limit
Dt → 0. For a given time increment Dt, the finite-dif-
ference approximations Ã(x) and B̃2(x) of (4) and (5)
become

1
Ã(x) 5 ^X(t 1 Dt) 2 x&| , and (A2)X(t)5xDt

1
2 2B̃ (x) 5 ^[X(t 1 Dt) 2 x] &| . (A3)X(t)5xDt

To estimate the error made by using a finite time increment
Dt, X(t 1 Dt) has to be expanded in a stochastic Itô Taylor
series (see, e.g., Kloeden and Platen 1992). The weak
stochastic Itô Taylor expansions up to the order Dt2 reads

1
2X(t 1 Dt) 5 X(t) 1 AI 1 BI 1 AA9 1 B A0 I(0) (1) (0,0)1 22

1
21 AB9 1 B B 0 I 1 BA9I(0,1) (1,0)1 22

1 BB9I 1 R. (A4)(1,1)

The Itô integrals I(i,j) are defined as
t1D t

I 5 dt9,(0) E
t

t1D t

I 5 dW(t9),(1) E
t

t1D t s

I 5 dt9 ds,(0,0) E E
t t

t1D t s

I 5 dt9 dW(s),(0,1) E E
t t

t1D t s

I 5 dW(t9) ds, and(1,0) E E
t t

t1D t s

I 5 dW(t9) dW(s),(1,1) E E
t t

where W denotes a Wiener process. Inserting the ex-
pansion of X(t 1 Dt) in (A2) and (A3), and keeping the
terms up the order Dt yields the finite-difference esti-
mates Ã and B̃2:

1
Ã 5 ^X(t 1 Dt) 2 x&|X(t)5xDt

2AA9 B A0
25 A 1 1 Dt 1 O(Dt ), (A5)1 22 4

1
2 2B̃ 5 ^[X(t 1 Dt) 2 x] &|X(t)5xDt

2 2 25 B 1 A 1 B A9 1 BAB9[
1

2 2 3 21 (B B9 1 B B 0) Dt 1 O(Dt ). (A6)]2

From (A5) and (A6), one can calculate the expected
errors for a given finite time increment if A(x) and B(x)
are known. Note that, of course, for Dt → 0, the esti-
mates Ã(x) and B̃(x)2 converge to A(x) and B(x)2. Be-
cause it is impossible to know the structure of the terms
A(x) and B(x) in advance, the most practical way to
detect the error made by using a finite time step is to
change Dt and to compare the results. Nevertheless, it
can be seen immediately that is problematic to detect
pure additive noise with finite time steps Dt because a
parabolic error emerges. Furthermore, the errors in in
Ã(x) and B̃(x)2 depend on nonlinear combinations of
A(x), B(x) and the corresponding derivatives.

To visualize the problem detecting additive noise with
finite time steps Dt, a linear deterministic damping term
A 5 2x is used in combination with a constant sto-
chastic term B 5 1. The known functions A(x) and B(x)
are inserted into (A5) and (A6) to calculate the theo-
retically expected errors Ã(x) 2 A(x) and B̃(x) 2 B(x).
Then, the theoretical results are compared with the anal-
ysis of numerically generated time series. The results
are shown in Fig. A1. It can be seen that it is indeed
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FIG. A1. Error estimates of the finite-difference (Dt 5 0.25) ap-
proximations (a) Ã(x) and (b) B̃(x) in the case of A 5 2x and B 5
1. Parameters A(x) and B(x) are solid lines; Ã(x) and B̃(x) are dashed
lines; Ã(x) 2 A(x) and B̃(x) 2 B(x) are dotted lines. The corresponding
numerical estimates are indicated by the plus and minus signs.

FIG. A2. Consistency check of the finite-difference (Dt 5 0.25)
approximations in the case of observed data (Southern Ocean zonal
winds at 508S, as in Fig. 1): The ‘‘correct’’ functions (a) A(x) and
(b) B(x) are indicated by solid lines. The theoretically predicted func-
tions Ã(x) and B̃(x) are indicated by the dashed lines. The errors Ã(x)
2 A(x) and B̃(x) 2 B(x) are indicated by the dotted lines.

problematic to detect pure additive noise with finite time
steps Dt because a parabolic error emerges.

One might ask if the structure of the multiplicative
noise discussed in this study is only due to the error
terms in (A5) and (A6). As already mentioned, it is
impossible to know the structure of A(x) and B(x) in
advance. The practical way to detect the error made by
using a finite time step is to change Dt and to compare
the results. This has been done, and it appears that the
error is neglectable for Dt 5 6, 12, and 18 h for mid-
latitude winds. The estimates of A(x) and B(x) begin to
diverge for time steps equal to or larger than 24 h. To
test the numerically estimated functions Ã and B̃ for
consistency, we assume that the estimated functions are
actually correct. Then, the ‘‘correct’’ estimates are in-
serted into (A5) and (A6). If the estimates are consistent
with the analytical error estimation, the error terms in
(A5) and (A6) should be small. This has been done with
the numerical estimates, and a representative example
(Southern Ocean zonal winds at 508S, as in Fig. 1) is
shown in Fig. A2. The error is indeed relatively small,
and, therefore, the estimates of Ã and B̃ are consistent

with the error formulae. This, in combination with the
finding that for midlatitude winds the results do not
depend on the time step Dt, proves that the multipli-
cative noise found in midlatitude wind data is not a
spurious signal.
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Gradišek, J., S. Siegert, R. Friedrich, and I. Grabec, 2000: Analysis
of time series from stochastic processes. Phys. Rev. E, 62, 3146–
3155.

Hasselmann, K., 1976: Stochastic climate models. Part I. Theory.
Tellus, 28, 473–484.

——, 1988: PIPs and POPs: The reduction of complex dynamical
systems using principal interaction and oscillation patterns. J.
Geophys. Res., 93, 11 015–11 021.

Hooge, F. N., 1976: 1/f noise. Physica B1C, 83, 14–23.
Horsthemke, W., and R. Lefever, 1984: Noise-Induced Transitions:

Theory and Applications in Physics, Chemistry, and Biology.
Springer-Verlag, 318 pp.

Junge, M., J.-S. von Storch, and J. Oberhuber, 2000: Large-scale
variability of the main thermocline excited by stochastic wind
stress forcing. J. Climate, 13, 2833–2840.

Kleeman, R., and A. M. Moore, 1997: A theory for the limitation of
ENSO predictability due to stochastic atmospheric transients. J.
Atmos. Sci., 54, 753–767.

Kloeden, P., and E. Platen, 1992: Numerical Solution of Stochastic
Differential Equations. Springer-Verlag, 632 pp.

Mikolajewicz, U., and E. Maier-Reimer, 1990: Internal secular var-
iability in an ocean general circulation model. Climate Dyn., 4,
145–156.

Milliff, R. F., W. G. Large, J. Morzel, and G. Danabasoglu, 1999:
Ocean general circulation model sensitivity to forcing from scat-
terometer winds. J. Geophys. Res., 104C, 11 337–11 358.
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